1887

Abstract

Five bacterial isolates were isolated from in 1976 in Rydalmere, Australia, during routine biosecurity surveillance. Initially, the results of biochemical characterisation indicated that these isolates represented members of the genus . To determine their species, further analysis was conducted using both phenotypic and genotypic approaches. Phenotypic analysis involved using MALDI-TOF MS and BIOLOG GEN III microplates, which confirmed that the isolates represented members of the genus but did not allow them to be classified with respect to species. Genome relatedness indices and the results of extensive phylogenetic analysis confirmed that the isolates were members of the genus and represented a novel species. On the basis the minimal presence of virulence-associated factors typically found in genomes of members of the genus , we suggest that these isolates are non-pathogenic. This conclusion was supported by the results of a pathogenicity assay. On the basis of these findings, we propose the name , with DAR 34855 = ICMP 24941 as the type strain.

Funding
This study was supported by the:
  • Australian Research Council (Award LP180100593)
    • Principle Award Recipient: DanielJ E McKnight
  • Rural Industries Research and Development Corporation (Award 9177866)
    • Principle Award Recipient: ToniA Chapman
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006294
2024-03-27
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/3/ijsem006294.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006294&mimeType=html&fmt=ahah

References

  1. Hayward AC. The hosts of Xanthomonas. In Swings JG, Civerolo EL. eds Xanthomonas Dordrecht: Springer Netherlands; 1993 pp 1–119 [View Article]
    [Google Scholar]
  2. Leyns F, De Cleene M, Swings J-G, De Ley J. The host range of the genus Xanthomonas. Bot Rev 1984; 50:308–356 [View Article]
    [Google Scholar]
  3. Starr MP. The genus Xanthomonas. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. eds The Prokaryotes Berlin, Heidelberg: Springer; 1981 pp 742–763 [View Article]
    [Google Scholar]
  4. Ryan RP, Vorhölter F-J, Potnis N, Jones JB, Van Sluys M-A et al. Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nat Rev Microbiol 2011; 9:344–355 [View Article] [PubMed]
    [Google Scholar]
  5. Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV et al. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 2011; 193:5450–5464 [View Article] [PubMed]
    [Google Scholar]
  6. An S-Q, Potnis N, Dow M, Vorhölter F-J, He Y-Q et al. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2020; 44:1–32 [View Article] [PubMed]
    [Google Scholar]
  7. Denancé N, Lahaye T, Noël LD. Editorial: genomics and effectomics of the crop killer Xanthomonas. Front Plant Sci 2016; 7:71 [View Article] [PubMed]
    [Google Scholar]
  8. Coburn B, Sekirov I, Finlay BB. Type III secretion systems and disease. Clin Microbiol Rev 2007; 20:535–549 [View Article] [PubMed]
    [Google Scholar]
  9. Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998; 62:379–433 [View Article] [PubMed]
    [Google Scholar]
  10. White FF, Potnis N, Jones JB, Koebnik R. The type III effectors of Xanthomonas. Mol Plant Pathol 2009; 10:749–766 [View Article] [PubMed]
    [Google Scholar]
  11. Davey ME, O’toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 2000; 64:847–867 [View Article] [PubMed]
    [Google Scholar]
  12. Zhang G, Meredith TC, Kahne D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr Opin Microbiol 2013; 16:779–785 [View Article] [PubMed]
    [Google Scholar]
  13. Sutherland IW. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 2001; 147:3–9 [View Article] [PubMed]
    [Google Scholar]
  14. Vauterin L, Yang P, Alvarez A, Takikawa Y, Roth DA et al. Identification of non-pathogenic Xanthomonas strains associated with plants. Syst Appl Microbiol 1996; 19:96–105 [View Article]
    [Google Scholar]
  15. Mafakheri H, Taghavi SM, Zarei S, Portier P, Dimkić I et al. Xanthomonas bonasiae sp. nov. and Xanthomonas youngii sp. nov., isolated from crown gall tissues. Int J Syst Evol Microbiol 2022; 72:005418 [View Article]
    [Google Scholar]
  16. Bansal K, Kaur A, Midha S, Kumar S, Korpole S et al. Xanthomonas sontii sp. nov., a non-pathogenic bacterium isolated from healthy basmati rice (Oryza sativa) seeds from India. Antonie van Leeuwenhoek 2021; 114:1935–1947 [View Article] [PubMed]
    [Google Scholar]
  17. Triplett LR, Verdier V, Campillo T, Van Malderghem C, Cleenwerck I et al. Characterization of a novel clade of Xanthomonas isolated from rice leaves in Mali and proposal of Xanthomonas maliensis sp. nov. Antonie van Leeuwenhoek 2015; 107:869–881 [View Article] [PubMed]
    [Google Scholar]
  18. Ndongo S, Beye M, Dubourg G, Nguyen TT, Couderc C et al. Genome analysis and description of Xanthomonas massiliensis sp. nov., a new species isolated from human faeces. New Microbes New Infect 2018; 26:63–72 [View Article] [PubMed]
    [Google Scholar]
  19. Essakhi S, Cesbron S, Fischer-Le Saux M, Bonneau S, Jacques M-A et al. Phylogenetic and variable-number tandem-repeat analyses identify nonpathogenic Xanthomonas arboricola lineages lacking the canonical type III secretion system. Appl Environ Microbiol 2015; 81:5395–5410 [View Article] [PubMed]
    [Google Scholar]
  20. Martins L, Fernandes C, Blom J, Dia NC, Pothier JF et al. Xanthomonas euroxanthea sp. nov., a new xanthomonad species including pathogenic and non-pathogenic strains of walnut. Int J Syst Evol Microbiol 2020; 70:6024–6031 [View Article] [PubMed]
    [Google Scholar]
  21. Doidge EM. A tomato canker. An Appl Biol 1921; 7:407–430 [View Article]
    [Google Scholar]
  22. Dowson WJ. On the systematic position and generic names of the Gram-negative bacterial plant pathogens. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 1939177–193 [View Article]
    [Google Scholar]
  23. Vauterin L, Hoste B, Kersters K, Swings J. Reclassification of Xanthomonas. Int J Syst Bacteriol 1995; 45:472–489 [View Article]
    [Google Scholar]
  24. Harrison J, Hussain RMF, Aspin A, Grant MR, Vicente JG et al. Phylogenomic analysis supports the transfer of 20 pathovars from Xanthomonas campestris into Xanthomonas euvesicatoria. Taxonomy 2023; 3:29–45 [View Article]
    [Google Scholar]
  25. Bogema DR, Micallef ML, Liu M, Padula MP, Djordjevic SP et al. Analysis of Theileria orientalis draft genome sequences reveals potential species-level divergence of the Ikeda, Chitose and Buffeli genotypes. BMC Genomics 2018; 19:298 [View Article] [PubMed]
    [Google Scholar]
  26. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol 2019; 20:129 [View Article] [PubMed]
    [Google Scholar]
  27. Wick R, Menzel P. Filtlong; 2021 https://github.com/rrwick/Filtlong accessed 26 April 2023
  28. Chen Y, Nie F, Xie S-Q, Zheng Y-F, Dai Q et al. Efficient assembly of nanopore reads via highly accurate and intact error correction. Nat Commun 2021; 12:60 [View Article]
    [Google Scholar]
  29. Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods 2020; 17:1103–1110 [View Article] [PubMed]
    [Google Scholar]
  30. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016; 32:2103–2110 [View Article]
    [Google Scholar]
  31. Vaser R, Šikić M. Time- and memory-efficient genome assembly with Raven. Nat Comput Sci 2021; 1:332–336 [View Article] [PubMed]
    [Google Scholar]
  32. Wick RR, Holt KE. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res 2019; 8:2138 [View Article] [PubMed]
    [Google Scholar]
  33. Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol 2021; 22:266 [View Article] [PubMed]
    [Google Scholar]
  34. Wright C, Wykes M. Medaka; 2020 https://github.com/nanoporetech/medak accessed 2 February 2023
  35. Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol 2022; 18:e1009802 [View Article] [PubMed]
    [Google Scholar]
  36. Zimin AV, Salzberg SL. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput Biol 2020; 16:e1007981 [View Article] [PubMed]
    [Google Scholar]
  37. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  40. Bansal K, Kumar S, Patil PB. Phylogenomic Insights into diversity and evolution of nonpathogenic Xanthomonas strains associated with citrus. mSphere 2020; 5:e00087-20 [View Article] [PubMed]
    [Google Scholar]
  41. Pena MM, Bhandari R, Bowers RM, Weis K, Newberry E et al. Genetic and functional diversity help explain pathogenic, weakly pathogenic, and commensal lifestyles in the genus Xanthomonas. Ecology 2023 [View Article]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  43. Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 2007; 45:2761–2764 [View Article] [PubMed]
    [Google Scholar]
  44. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 2021; 7:000685 [View Article] [PubMed]
    [Google Scholar]
  45. Seemann T. Barrnap 0.9: rapid ribosomal RNA prediction; 2018 https://github.com/tseemann/barrnap accessed 20 February 2023
  46. Edgar RC. High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Bioinformatics 2021 [View Article]
    [Google Scholar]
  47. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  48. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  49. Hauben L, Vauterin L, Swings J, Moore ERB. Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int J Syst Bacteriol 1997; 47:328–335 [View Article] [PubMed]
    [Google Scholar]
  50. Reece RJ, Maxwell A. DNA gyrase: structure and function. Crit Rev Biochem Mol Biol 1991; 26:335–375 [View Article] [PubMed]
    [Google Scholar]
  51. Parkinson N, Aritua V, Heeney J, Cowie C, Bew J et al. Phylogenetic analysis of Xanthomonas species by comparison of partial gyrase B gene sequences. Int J Syst Evol Microbiol 2007; 57:2881–2887 [View Article] [PubMed]
    [Google Scholar]
  52. Bogema DR. Genagr; 2022 https://github.com/bogemad/genagr accessed 23 March 2023
  53. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  54. Young JM, Park D-C, Shearman HM, Fargier E. A multilocus sequence analysis of the genus Xanthomonas. Syst Appl Microbiol 2008; 31:366–377 [View Article] [PubMed]
    [Google Scholar]
  55. Bansal K, Kumar S, Kaur A, Singh A, Patil PB. Deep phylo-taxono genomics reveals Xylella as a variant lineage of plant associated Xanthomonas and supports their taxonomic reunification along with Stenotrophomonas and Pseudoxanthomonas. Genomics 2021; 113:3989–4003 [View Article] [PubMed]
    [Google Scholar]
  56. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  57. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  58. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  59. Seemann T. Snippy: fast bacterial variant calling from NGS reads; 2015 https://github.com/tseemann/snippy accessed 4 June 2023
  60. Mai U, Sayyari E, Mirarab S. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction. PLoS One 2017; 12:e0182238 [View Article] [PubMed]
    [Google Scholar]
  61. Dia NC, Van Vaerenbergh J, Van Malderghem C, Blom J, Smits THM et al. Xanthomonas hydrangeae sp. nov., a novel plant pathogen isolated from Hydrangea arborescens. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  62. Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 2021; 18:366–368 [View Article] [PubMed]
    [Google Scholar]
  63. Gétaz M, Blom J, Smits THM, Pothier JF. Comparative genomics of Xanthomonas fragariae and Xanthomonas arboricola pv. fragariae reveals intra- and interspecies variations. Phytopathol Res 2020; 2:17 [View Article]
    [Google Scholar]
  64. Alvarez-Martinez CE, Sgro GG, Araujo GG, Paiva MRN, Matsuyama BY et al. Secrete or perish: the role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2021; 19:279–302 [View Article] [PubMed]
    [Google Scholar]
  65. Bianco MI, Toum L, Yaryura PM, Mielnichuk N, Gudesblat GE et al. Xanthan pyruvilation is essential for the virulence of Xanthomonas campestris pv. campestris. Mol Plant Microbe Interact 2016; 29:688–699 [View Article] [PubMed]
    [Google Scholar]
  66. Yun MH, Torres PS, El Oirdi M, Rigano LA, Gonzalez-Lamothe R et al. Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol 2006; 141:178–187 [View Article] [PubMed]
    [Google Scholar]
  67. Nellessen CM, Nehl DB. An easy adjustment of instrument settings ('Peak MALDI’) improves identification of organisms by MALDI-ToF mass spectrometry. Sci Rep 2023; 13:15018 [View Article]
    [Google Scholar]
  68. Kałużna M, Kuras A, Puławska J. mRNA extraction of Xanthomonas fragariae in strawberry and validation of reference genes for the RT-qPCR for study of bacterial gene expression. Mol Biol Rep 2019; 46:5723–5733 [View Article] [PubMed]
    [Google Scholar]
  69. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  70. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006294
Loading
/content/journal/ijsem/10.1099/ijsem.0.006294
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error