1887

Abstract

The taxonomic status of Paenibacillus thermophilus was analyzed using genomic and phenotypic approaches. The results of RNA polymerase beta subunit gene sequence comparisons indicated that two type strains of P. thermophilus (DSM 24746 and JCM 17693) and Paenibacillus macerans ATCC 8244 shared 100 % sequence similarity. By whole-genome sequence comparison, their average nucleotide identity values were over 99.3 %. Investigation of substrate utilization, enzyme activities and cellular fatty acid patterns displayed no striking differences between P. thermophilus JCM 17693 and P. macerans JCM 2500. On the basis of these results, we propose that the name Paenibacillus thermophilus is a later heterotypic synonym of Paenibacillus macerans .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003160
2018-12-12
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/417.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003160&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260[PubMed]
    [Google Scholar]
  2. Fergus GP. et al. Genus I. Paenibacillus. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 3 New York: Springer; 2009269–295
    [Google Scholar]
  3. Liang TW, Wu CC, Cheng WT, Chen YC, Wang CL et al. Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl Biochem Biotechnol 2014; 172:933–950 [View Article][PubMed]
    [Google Scholar]
  4. Wind RD, Uitdehaag JC, Buitelaar RM, Dijkstra BW, Dijkhuizen L. Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. J Biol Chem 1998; 273:5771–5779 [View Article][PubMed]
    [Google Scholar]
  5. Gupta A, Murarka A, Campbell P, Gonzalez R. Anaerobic fermentation of glycerol in Paenibacillus macerans: metabolic pathways and environmental determinants. Appl Environ Microbiol 2009; 75:5871–5883 [View Article][PubMed]
    [Google Scholar]
  6. Zhou Y, Gao S, Wei DQ, Yang LL, Huang X et al. Paenibacillus thermophilus sp. nov., a novel bacterium isolated from a sediment of hot spring in Fujian province, China. Antonie van Leeuwenhoek 2012; 102:601–609 [View Article][PubMed]
    [Google Scholar]
  7. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  8. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  9. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 2014; 24:1384–1395 [View Article][PubMed]
    [Google Scholar]
  10. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article][PubMed]
    [Google Scholar]
  11. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  12. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  13. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  14. Tohno M, Kobayashi H, Nomura M, Kitahara M, Ohkuma M et al. Genotypic and phenotypic characterization of lactic acid bacteria isolated from Italian ryegrass silage. Anim Sci J 2012; 83:111–120 [View Article][PubMed]
    [Google Scholar]
  15. Tohno M, Kitahara M, Uegaki R, Irisawa T, Ohkuma M et al. Lactobacillus hokkaidonensis sp. nov., isolated from subarctic timothy grass (Phleum pratense L.) silage. Int J Syst Evol Microbiol 2013; 63:2526–2531 [View Article][PubMed]
    [Google Scholar]
  16. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  20. Adékambi T, Shinnick TM, Raoult D, Drancourt M. Complete rpoB gene sequencing as a suitable supplement to DNA–DNA hybridization for bacterial species and genus delineation. Int J Syst Evol Microbiol 2008; 58:1807–1814 [View Article][PubMed]
    [Google Scholar]
  21. Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52:841–849 [View Article][PubMed]
    [Google Scholar]
  22. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003160
Loading
/content/journal/ijsem/10.1099/ijsem.0.003160
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error