1887

Abstract

A chemolithoautotrophic sulfur-oxidizing, diazotrophic, facultatively heterotrophic, endosymbiotic bacterium, designated as strain 2141T, was isolated from the gills of the giant shipworm Kuphus polythalamius (Teredinidae: Bivalvia). Based on its 16S rRNA sequence, the endosymbiont falls within a clade that includes the as-yet-uncultivated thioautotrophic symbionts of a marine ciliate and hydrothermal vent gastropods, uncultivated marine sediment bacteria, and a free-living sulfur-oxidizing bacterium ODIII6, all of which belong to the Gammaproteobacteria. The endosymbiont is Gram-negative, rod-shaped and has a single polar flagellum when grown in culture. This bacterium can be grown chemolithoautotrophically on a chemically defined medium supplemented with either hydrogen sulfide, thiosulfate, tetrathionate or elemental sulfur. The closed-circular genome has a DNA G+C content of 60.1 mol% and is 4.79 Mbp in size with a large nitrogenase cluster spanning nearly 40 kbp. The diazotrophic capability was confirmed by growing the strain on chemolithoautotrophic thiosulfate-based medium without a combined source of fixed nitrogen. The bacterium is also capable of heterotrophic growth on organic acids such as acetate and propionate. The pH, temperature and salinity optima for chemolithoautotrophic growth on thiosulfate were found to be 8.5, 34 °C and 0.2 M NaCl, respectively. To our knowledge, this is the first report of pure culture of a thioautotrophic animal symbiont. The type strain of Thiosocius teredinicola is PMS-2141T.STBD.0c.01a (=DSM 108030).

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003143
2018-12-12
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/3/638.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003143&mimeType=html&fmt=ahah

References

  1. Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 2008; 6:725–740 [View Article][PubMed]
    [Google Scholar]
  2. Cavanaugh CM, McKiness ZP, Newton IL, Stewart FJ. Marine chemosynthetic symbioses. The Prokaryotes New York, NY: Springer; 2006 pp. 475–507
    [Google Scholar]
  3. Huber M. Compendium of Bivalves 2. A Full-Color Guide to the Remaining Seven Families. A Systematic Listing of 8,500 Bivalve Species and 10,500 Synonyms Hackenheim, Germany: ConchBooks; 2015
    [Google Scholar]
  4. Distel DL, Amin M, Burgoyne A, Linton E, Mamangkey G et al. Molecular phylogeny of Pholadoidea Lamarck, 1809 supports a single origin for xylotrophy (wood feeding) and xylotrophic bacterial endosymbiosis in Bivalvia. Mol Phylogenet Evol 2011; 61:245–254 [View Article][PubMed]
    [Google Scholar]
  5. Waterbury JB, Calloway CB, Turner RD. A cellulolytic nitrogen-fixing bacterium cultured from the gland of deshayes in shipworms (bivalvia: teredinidae). Science 1983; 221:1401–1403 [View Article][PubMed]
    [Google Scholar]
  6. Distel DL, Morrill W, Maclaren-Toussaint N, Franks D, Waterbury J et al. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol 2002; 52:2261–2269 [View Article][PubMed]
    [Google Scholar]
  7. O'Connor RM, Fung JM, Sharp KH, Benner JS, McClung C et al. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk. Proc Natl Acad Sci USA 2014; 111:E5096E5104 [View Article][PubMed]
    [Google Scholar]
  8. Shipway JR, Altamia MA, Haga T, Velásquez M, Albano J et al. Observations on the Life History and Geographic Range of the Giant Chemosymbiotic Shipworm Kuphus polythalamius (Bivalvia: Teredinidae). The Biological Bulletin 2018; 235: [Epub ahead of print] [View Article]
    [Google Scholar]
  9. Distel DL, Altamia MA, Lin Z, Shipway JR, Han A et al. Discovery of chemoautotrophic symbiosis in the giant shipworm Kuphus polythalamia (Bivalvia: Teredinidae) extends wooden-steps theory. Proc Natl Acad Sci USA 2017; 114:E3652E3658 [View Article][PubMed]
    [Google Scholar]
  10. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 2004; 20:407–415 [View Article][PubMed]
    [Google Scholar]
  11. Rinke C, Schmitz-Esser S, Stoecker K, Nussbaumer AD, Molnár DA et al. "Candidatus Thiobios zoothamnicoli," an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Appl Environ Microbiol 2006; 72:2014–2021 [View Article][PubMed]
    [Google Scholar]
  12. Nakagawa S, Shimamura S, Takaki Y, Suzuki Y, Murakami S et al. Allying with armored snails: the complete genome of gammaproteobacterial endosymbiont. Isme J 2014; 8:40–51 [View Article][PubMed]
    [Google Scholar]
  13. Suzuki Y, Kojima S, Sasaki T, Suzuki M, Utsumi T et al. Host-symbiont relationships in hydrothermal vent gastropods of the genus Alviniconcha from the Southwest Pacific. Appl Environ Microbiol 2006; 72:1388–1393 [View Article][PubMed]
    [Google Scholar]
  14. Kuever J, Sievert SM, Stevens H, Brinkhoff T, Muyzer G. Microorganisms of the oxidative and reductive part of the sulphur cycle at a shallow-water hydrothermal vent in the Aegean Sea (Milos, Greece). Cah Biol Mar 2002; 43:413–416
    [Google Scholar]
  15. Roeselers G, Newton IL, Woyke T, Auchtung TA, Dilly GF et al. Complete genome sequence of Candidatus Ruthia magnifica. Stand Genomic Sci 2010; 3:163–173 [View Article][PubMed]
    [Google Scholar]
  16. Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S et al. Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii. Curr Biol 2007; 17:881–886 [View Article][PubMed]
    [Google Scholar]
  17. Nussbaumer AD, Fisher CR, Bright M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 2006; 441:345–348 [View Article][PubMed]
    [Google Scholar]
  18. Harmer TL, Rotjan RD, Nussbaumer AD, Bright M, Ng AW et al. Free-living tube worm endosymbionts found at deep-sea vents. Appl Environ Microbiol 2008; 74:3895–3898 [View Article][PubMed]
    [Google Scholar]
  19. Won YJ, Hallam SJ, O'Mullan GD, Pan IL, Buck KR et al. Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus bathymodiolus. Appl Environ Microbiol 2003; 69:6785–6792 [View Article][PubMed]
    [Google Scholar]
  20. Flood BE, Jones DS, Bailey JV. Sedimenticola thiotaurini sp. nov., a sulfur-oxidizing bacterium isolated from salt marsh sediments, and emended descriptions of the genus Sedimenticola and Sedimenticola selenatireducens. Int J Syst Evol Microbiol 2015; 65:2522–2530 [View Article][PubMed]
    [Google Scholar]
  21. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  22. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  23. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  24. Abdul-Rahman F, Petit E, Blanchard JL. The distribution of polyhedral bacterial microcompartments suggests frequent horizontal transfer and operon reassembly. J Phylogenetics Evol Biol 2013; 1:1–7
    [Google Scholar]
  25. Polz MF, Felbeck H, Novak R, Nebelsick M, Ott JA. Chemoautotrophic, sulfur-oxidizing symbiotic bacteria on marine nematodes: Morphological and biochemical characterization. Microb Ecol 1992; 24:313–329 [View Article][PubMed]
    [Google Scholar]
  26. Krueger DM, Dubilier N, Cavanaugh CM. Chemoautotrophic symbiosis in the tropical clamSolemya occidentalis (Bivalvia: Protobranchia): ultrastructural and phylogenetic analysis. Mar Biol 1996; 126:55–64 [View Article]
    [Google Scholar]
  27. Bauer-Nebelsick M, Bardele CF, Ott JA. Electron microscopic studies on Zoothamnium niveum (Hemprich & Ehrenberg, 1831) Ehrenberg 1838 (Oligohymenophora, Peritrichida), a ciliate with ectosymbiotic, chemoautotrophic bacteria. Eur J Protistol 1996; 32:202–215 [View Article]
    [Google Scholar]
  28. Lechene CP, Luyten Y, McMahon G, Distel DL. Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 2007; 317:1563–1566 [View Article][PubMed]
    [Google Scholar]
  29. König S, Gros O, Heiden SE, Hinzke T, Thürmer A et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat Microbiol 2016; 2:16193 [View Article][PubMed]
    [Google Scholar]
  30. Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, van der Geest M et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol 2016; 2:16195 [View Article][PubMed]
    [Google Scholar]
  31. Kleiner M, Wentrup C, Lott C, Teeling H, Wetzel S et al. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc Natl Acad Sci USA 2012; 109:E1173E1182 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003143
Loading
/content/journal/ijsem/10.1099/ijsem.0.003143
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error