1887
Preview this article:

There is no abstract available.

Keyword(s): agrobacteria and rhizobia
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002974
2018-09-07
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3363.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002974&mimeType=html&fmt=ahah

References

  1. de Lajudie P, Martinez-Romero E. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Agrobacterium and Rhizobium Minutes of the meeting, 7 September 2014, Tenerife, Spain. Int J Syst Evol Microbiol 2017; 67:516–520 [View Article][PubMed]
    [Google Scholar]
  2. de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee for the Taxonomy of Rhizobium and Agrobacterium Minutes of the meeting, budapest, 25 august 2016. Int J Syst Evol Microbiol 2017; 67:2485–2494 [View Article][PubMed]
    [Google Scholar]
  3. Kathiravan R, Jegan S, Ganga V, Prabavathy VR, Tushar L et al. Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chick pea (Cicer arietinum L.). Int J Syst Evol Microbiol 2013; 63:4484–4488 [View Article][PubMed]
    [Google Scholar]
  4. De Meyer SE, Willems A. Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. Int J Syst Evol Microbiol 2012; 62:2505–2510 [View Article][PubMed]
    [Google Scholar]
  5. Rosselló-Móra R, Trujillo ME, Sutcliffe IC. Introducing a Digital Protologue: a timely move towards a database-driven systematics of Archaea and Bacteria. Syst Appl Microbiol 2017; 40:121–122 [View Article][PubMed]
    [Google Scholar]
  6. De Vos P, Truper HG. Judicial Commission of the International Committee on Systematic Bacteriology; IXth International (IUMS) Congress of Bacteriology and Applied Microbiology. Int J Syst Evol Microbiol 2000; 50:2239–2244 [View Article]
    [Google Scholar]
  7. McCluskey K, Barker KB, Barton HA, Boundy-Mills K, Brown DR et al. The U.S. culture collection network responding to the requirements of the nagoya protocol on access and benefit sharing. MBio 2017; 8:e00982 [View Article][PubMed]
    [Google Scholar]
  8. Andrews M, Andrews ME. Specificity in legume-rhizobia symbioses. Int J Mol Sci 2017; 18:705–774 [View Article][PubMed]
    [Google Scholar]
  9. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  10. Mattarelli P, Holzapfel W, Franz CM, Endo A, Felis GE et al. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014; 64:1434–1451 [View Article][PubMed]
    [Google Scholar]
  11. Vandamme P, Peeters C. Time to revisit polyphasic taxonomy. Antonie van Leeuwenhoek 2014; 106:57–65 [View Article][PubMed]
    [Google Scholar]
  12. Sutcliffe IC, Trujillo ME, Goodfellow M. A call to arms for systematists: revitalising the purpose and practises underpinning the description of novel microbial taxa. Antonie van Leeuwenhoek 2012; 101:13–20 [View Article][PubMed]
    [Google Scholar]
  13. Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS et al. Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 1991; 41:582–587 [View Article]
    [Google Scholar]
  14. Sutcliffe IC, Trujillo ME, Whitman WB, Goodfellow M. A call to action for the International Committee on Systematics of Prokaryotes. Trends Microbiol 2013; 21:51–52 [View Article][PubMed]
    [Google Scholar]
  15. Whitman WB. Intent of the nomenclatural Code and recommendations about naming new species based on genomic sequences. The Bulletin of BISMiS 2011; 2:135–139
    [Google Scholar]
  16. Renner SS. A return to Linnaeus's focus on diagnosis, not description: the use of DNA characters in the formal naming of species. Syst Biol 2016; 65:1085–1095 [View Article][PubMed]
    [Google Scholar]
  17. Zahradník J, Nunvar J, Pařízková H, Kolářová L, Palyzová A et al. Agrobacterium bohemicum sp. nov. isolated from poppy seed wastes in central Bohemia. Syst Appl Microbiol 2018; 41:184–190 [View Article][PubMed]
    [Google Scholar]
  18. Yan J, Li Y, Han XZ, Chen WF, Zou WX et al. Agrobacterium deltaense sp. nov., an endophytic bacteria isolated from nodule of Sesbania cannabina. Arch Microbiol 2017; 199:1003–1009 [View Article][PubMed]
    [Google Scholar]
  19. Kuzmanović N, Puławska J, Smalla K, Nesme X. Agrobacterium rosae sp. nov., isolated from galls on different agricultural crops. Syst Appl Microbiol 2018; 41:191–197 [View Article][PubMed]
    [Google Scholar]
  20. Yan J, Li Y, Yan H, Chen WF, Zhang X et al. Agrobacterium salinitolerans sp. nov., a saline-alkaline-tolerant bacterium isolated from root nodule of Sesbania cannabina. Int J Syst Evol Microbiol 2017; 67:1906–1911 [View Article][PubMed]
    [Google Scholar]
  21. Mougel C, Thioulouse J, Perrière G, Nesme X. A mathematical method for determining genome divergence and species delineation using AFLP. Int J Syst Evol Microbiol 2002; 52:573–586 [View Article][PubMed]
    [Google Scholar]
  22. Costechareyre D, Bertolla F, Nesme X. Homologous recombination in Agrobacterium: potential implications for the genomic species concept in bacteria. Mol Biol Evol 2009; 26:167–176 [View Article][PubMed]
    [Google Scholar]
  23. Costechareyre D, Rhouma A, Lavire C, Portier P, Chapulliot D et al. Rapid and efficient identification of Agrobacterium species by recA allele analysis: Agrobacterium recA diversity. Microb Ecol 2010; 60:862–872 [View Article][PubMed]
    [Google Scholar]
  24. Panday D, Schumann P, Das SK. Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). Int J Syst Evol Microbiol 2011; 61:2632–2639 [View Article][PubMed]
    [Google Scholar]
  25. Aujoulat F, Marchandin H, Zorgniotti I, Masnou A, Jumas-Bilak E. Rhizobium pusense is the main human pathogen in the genus Agrobacterium/Rhizobium. Clin Microbiol Infect 2015; 21:472.e1–47472 [View Article][PubMed]
    [Google Scholar]
  26. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 2015; 38:84–90 [View Article][PubMed]
    [Google Scholar]
  27. Ardley JK, Parker MA, De Meyer SE, Trengove RD, O'Hara GW et al. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012; 62:2579–2588 [View Article][PubMed]
    [Google Scholar]
  28. Radl V, Simões-Araújo JL, Leite J, Passos SR, Martins LM et al. Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 2014; 64:725–730 [View Article][PubMed]
    [Google Scholar]
  29. Safronova Vi KIG, Sazanova AL et al. Microvirga ossetica sp nov., a species of rhizobia isolated from root nodules of the legume species Vicia alpestris Steven. J Syst Evol Microbiol 2017; 67:94–100
    [Google Scholar]
  30. Lafay B, Burdon JJ. Molecular diversity of legume root-nodule bacteria in Kakadu National Park, Northern Territory, Australia. PLoS One 2007; 2:e277 [View Article][PubMed]
    [Google Scholar]
  31. Wolde-Meskel E, Terefework Z, Frostegård A, Lindström K. Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. Int J Syst Evol Microbiol 2005; 55:1439–1452 [View Article][PubMed]
    [Google Scholar]
  32. Msaddak A, Rejili M, Durán D, Rey L, Imperial J et al. Members of Microvirga and Bradyrhizobium genera are native endosymbiotic bacteria nodulating Lupinus luteus in Northern Tunisian soils. FEMS Microbiol Ecol 2017; 93:1–11 [View Article][PubMed]
    [Google Scholar]
  33. Leite J, Fischer D, Rouws LF, Fernandes-Júnior PI, Hofmann A et al. Cowpea Nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Front Plant Sci 2016; 7: [View Article][PubMed]
    [Google Scholar]
  34. Dijkshoorn L. International Committee on Systematics of Prokaryotes. Minutes of the meetings, 7, 8 and 9 July 2017, Valencia, Spain. Int J Syst Evol Microbiol 2018; 68:2104–2110 [View Article][PubMed]
    [Google Scholar]
  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  36. Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX. Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 2002; 52:2231–2239 [View Article][PubMed]
    [Google Scholar]
  37. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C et al. Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 2014; 37:208–215 [View Article][PubMed]
    [Google Scholar]
  38. Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Rivas R, Igual JM et al. Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobiumerdmanii erdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobium jarvisii sp. nov. Int J Syst Evol Microbiol 2015; 65:1703–1708 [View Article][PubMed]
    [Google Scholar]
  39. Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K et al. Draft genome sequence of type strain HBR26T and description of Rhizobium aethiopicum sp. nov. Stand Genomic Sci 2017; 12:Article 14 [View Article][PubMed]
    [Google Scholar]
  40. Li Y, Lei X, Xu Y, Zhu H, Xu M et al. Rhizobium albus sp. nov., Isolated from lake water in Xiamen, Fujian Province of China. Curr Microbiol 2017; 74:42–48 [View Article][PubMed]
    [Google Scholar]
  41. Mohapatra B, Sarkar A, Joshi S, Chatterjee A, Kazy SK et al. An arsenate-reducing and alkane-metabolizing novel bacterium, Rhizobium arsenicireducens sp. nov., isolated from arsenic-rich groundwater. Arch Microbiol 2017; 199:191–201 [View Article][PubMed]
    [Google Scholar]
  42. Yan J, Yan H, Liu LX, Chen WF, Zhang XX et al. Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 2017; 199:97–104 [View Article][PubMed]
    [Google Scholar]
  43. Kaiya S, Rubaba O, Yoshida N, Yamada T, Hiraishi A. Characterization of Rhizobium naphthalenivorans sp. nov. with special emphasis on aromatic compound degradation and multilocus sequence analysis of housekeeping genes. J Gen Appl Microbiol 2012; 58:211–224 [View Article][PubMed]
    [Google Scholar]
  44. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2018; 68:693–694 [View Article][PubMed]
    [Google Scholar]
  45. Zhao JJ, Zhang J, Sun L, Zhang RJ, Zhang CW et al. Rhizobium oryziradicis sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 2017; 67:963–968 [View Article][PubMed]
    [Google Scholar]
  46. Zhao JJ, Zhang J, Zhang RJ, Zhang CW, Yin HQ et al. Rhizobium rhizosphaerae sp. nov., a novel species isolated from rice rhizosphere. Antonie van Leeuwenhoek 2017; 110:651–656 [View Article][PubMed]
    [Google Scholar]
  47. Gao JL, Sun P, Wang XM, Lv FY, Mao XJ et al. Rhizobium wenxiniae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2017; 67:2798–2803 [View Article][PubMed]
    [Google Scholar]
  48. Naqvi SU, Qin Y, Tahir A, Stougaard P. Pararhizobium antarcticum sp. nov., isolated from Antarctic water samples. Int J Syst Evol Microbiol 2017; 67:1650–1655 [View Article][PubMed]
    [Google Scholar]
  49. Fu GY, Yu XY, Zhang CY, Zhao Z, Wu D et al. Mesorhizobium oceanicum sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2017; 67:2739–2745 [View Article][PubMed]
    [Google Scholar]
  50. Martins da Costa E, Azarias Guimarães A, Pereira Vicentin R, de Almeida Ribeiro PR, Ribas Leão AC et al. Bradyrhizobium brasilense sp. nov., a symbiotic nitrogen-fixing bacterium isolated from Brazilian tropical soils. Arch Microbiol 2017; 199:1211–1221 [View Article][PubMed]
    [Google Scholar]
  51. Michel DC, Passos SR, Simões-Araujo JL, Baraúna AC, da Silva K et al. Bradyrhizobium centrolobii and Bradyrhizobium macuxiense sp. nov. isolated from Centrolobium paraense grown in soil of Amazonia, Brazil. Arch Microbiol 2017; 199:657–664 [View Article][PubMed]
    [Google Scholar]
  52. Helene LCF, Delamuta JRM, Ribeiro RA, Hungria M. Bradyrhizobium mercantei sp. nov., a nitrogen-fixing symbiont isolated from nodules of Deguelia costata (syn. Lonchocarpus costatus). Int J Syst Evol Microbiol 2017; 67:1827–1834 [View Article][PubMed]
    [Google Scholar]
  53. de Matos GF, Zilli JE, de Araújo JLS, Parma MM, Melo IS et al. Bradyrhizobium sacchari sp. nov., a legume nodulating bacterium isolated from sugarcane roots. Arch Microbiol 2017; 199:1251–1258 [View Article][PubMed]
    [Google Scholar]
  54. Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K. Draft genome sequences of Bradyrhizobium shewense sp. nov. ERR11T and Bradyrhizobium yuanmingense CCBAU 10071T. Stand Genomic Sci 2017; 12:74 [View Article][PubMed]
    [Google Scholar]
  55. Bournaud C, Moulin L, Cnockaert M, Faria S, Prin Y et al. Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol 2017; 67:432–440 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002974
Loading
/content/journal/ijsem/10.1099/ijsem.0.002974
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error